httpsstays.myfuturehub.com (16)

Exploratory Data Analysis (EDA) – Step by Step Guide πŸ“Š

Before building any machine learning model, the first step is understanding your data β€” and that’s where EDA comes in. EDA helps uncover hidden patterns, detect anomalies, and test assumptions to make your dataset ML-ready. πŸš€

Step-by-Step EDA Workflow:

  Data Collection & Loading β†’ Gather datasets (CSV, SQL, APIs) and load into Python/R.
  Data Cleaning β†’ Handle missing values, duplicates, inconsistent formats.
  Univariate Analysis β†’ Study each variable (distribution, central tendency, spread).
  Bivariate/Multivariate Analysis β†’ Correlations, scatterplots, heatmaps to study relationships.
  Outlier Detection β†’ Identify anomalies with boxplots, Z-scores, or IQR methods.
  Feature Engineering β†’ Create new features, transform categorical data ,scaling/normalization.
  Data Visualization β†’ Use matplotlib, seaborn, or plotly for interactive insights.
  Insights & Hypotheses β†’ Summarize key findings to guide modeling.

 Tools for EDA:

Python β†’ Pandas, NumPy, Seaborn, Matplotlib, Plotly

R β†’ ggplot2, dplyr, tidyverse

Join Realtime Program with handson to Business client projects. #Call on +917989319567 / whatsapp on https://wa.link/t1hnyy

—————————–
Regards,
Technilix.com
Division of MFH IT Solutions (GST ID: 37ABWFM7509H1ZL)
☎️ Contact Us https://lnkd.in/gEfhFidB
LinkedIn https://lnkd.in/ei75Ht8e

#Technilix #EDA #DataScience #MachineLearning #DataAnalysis #Python #R #BigData #AI