Exploratory Data Analysis (EDA) β Step by Step Guide π
Before building any machine learning model, the first step is understanding your data β and thatβs where EDA comes in. EDA helps uncover hidden patterns, detect anomalies, and test assumptions to make your dataset ML-ready. π
Step-by-Step EDA Workflow:
Data Collection & Loading β Gather datasets (CSV, SQL, APIs) and load into Python/R.
Data Cleaning β Handle missing values, duplicates, inconsistent formats.
Univariate Analysis β Study each variable (distribution, central tendency, spread).
Bivariate/Multivariate Analysis β Correlations, scatterplots, heatmaps to study relationships.
Outlier Detection β Identify anomalies with boxplots, Z-scores, or IQR methods.
Feature Engineering β Create new features, transform categorical data ,scaling/normalization.
Data Visualization β Use matplotlib, seaborn, or plotly for interactive insights.
Insights & Hypotheses β Summarize key findings to guide modeling.
Tools for EDA:
Python β Pandas, NumPy, Seaborn, Matplotlib, Plotly
R β ggplot2, dplyr, tidyverse
Join Realtime Program with handson to Business client projects. #Call on +917989319567 / whatsapp on https://wa.link/t1hnyy
ββββββββββ
Regards,
Technilix.com
Division of MFH IT Solutions (GST ID: 37ABWFM7509H1ZL)
βοΈ Contact Us https://lnkd.in/gEfhFidB
LinkedIn https://lnkd.in/ei75Ht8e
#Technilix #EDA #DataScience #MachineLearning #DataAnalysis #Python #R #BigData #AI